| Name Surname: ANSWER KEY | Group No: |
| :--- | :--- | :--- |
| Student No: | Duration: 90 mins. |
| Department: | Date: Monday, Jan 17, 2022 |
| Lecturer: | Signature: |

! Attention: The 9th article of Student Disciplinary Regulations of Higher Education Council (YÖK) Law No. 2547 states that people who are "cheating or helping to cheat or attempt to cheat in exams" will be punished by suspension of one or two semesters.

1. Let $V=\mathbb{R}^{2}$ and $A=\{(1,0),(0,1)\}, B=\{(2,0),(1,3)\}, C=$ $\{(1,-3),(2,4)\}$ be subsets of V. The vector $v=(8,6) \in V$ can be written as the linear combination of
a) Only A
b) A and B
c) Only C
d) B and C
(e) A, B and C
2. Let $A=\left[\begin{array}{ccc}0 & a+b & c+2 \\ a & 2 & c \\ 4 & a+b & 4\end{array}\right]$ be a symmetric matrix. Which of the following statement(s) are correct for the matrix $B=$ $\left[\begin{array}{ccr}b & a & -2 \\ b-a & 0 & 1 \\ c & -1 & b\end{array}\right] ?$
I. B is a skew-symmetric matrix.
II. B^{2} is a symmetric matrix.
III. $\operatorname{Tr}(B)=\operatorname{Tr}(A)$.
a) Only I
b) I and II
c) II and III
d) I and III
e) All of them
3. Which of the following statement(s) are correct for the homogeneous system

$$
\begin{array}{r}
2 x_{1}+3 x_{2}+7 x_{3}=0 \\
-2 x_{1}-4 x_{3}=0 \\
x_{1}+2 x_{2}+4 x_{3}=0
\end{array}
$$

I. The system can be solved by using Cramer's rule.
II. The system has infinitely many solutions.
III. The system has only trivial (zero) solution.
a) I and II
b) Only II
c) Only III
d) I and III
e) Only I
4. What is the value of the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|$?
a) $(a+b)(a+c)(b+c)$
b) $(a-b)(c-a)(c-b)$
c) $(b-a)(a-c)(c-b)$
d) $(b-a)(c-a)(c-b)$
e) $(b-a)(c-a)(b-c)$
5. Let $S=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, y=x+z\right.$, where $\left.x, y, z \in \mathbb{R}\right\}$ be the subspace of \mathbb{R}^{3}. What is the dimension of S ?
a) 1
b) 2
c) 3
d) 4
e) None of them
7. Let $P(-1,3,2), Q(2,1,3)$ and $R(5,-2,4)$ be points in \mathbb{R}^{3}. Assume that $\overrightarrow{\mathbf{u}}=\overrightarrow{P Q}$ and $\overrightarrow{\mathbf{v}}=\overrightarrow{P R}$. Which of the following vector is perpendicular (orthogonal) to both $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$?
a) $\vec{i}+\vec{j}+\vec{k}$
b) $\vec{i}+2 \vec{j}-3 \vec{k}$
c) $\vec{j}+\vec{k}$
d) $\vec{i}-3 \vec{k}$
e) $3 \vec{i}-\vec{j}+2 \vec{k}$
6. Which of the following subsets are subspaces of the given vector spaces?

$$
\begin{aligned}
& \mathcal{Y}=\left\{\left.\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\} \subset \mathbb{R}^{2} \\
& \mathcal{T}=\left\{\left.\left[\begin{array}{c}
x \\
x+1 \\
0
\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\} \subset \mathbb{R}^{3} \\
& \mathcal{U}=\left\{\left.\left[\begin{array}{l}
x \\
0 \\
0
\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\} \subset \mathbb{R}^{3}
\end{aligned}
$$

a) Only \mathcal{Y}
b) Only \mathcal{T}
c) Only \mathcal{U}
d) \mathcal{Y} and \mathcal{T}
e) \mathcal{T} and \mathcal{U}
8. Let $M_{n \times n}$ denote the vector space of all $n \times n$ real matrices. Consider the subset

$$
W=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & 0
\end{array}\right] \in M_{2 \times 2} \right\rvert\, a+b+c=0 \text { where } a, b, c \in \mathbb{R}\right\}
$$

Which of the following statements are always true?
I. The set W is a subspace of $M_{2 \times 2}$.
II. $B=\left\{\left[\begin{array}{rr}1 & 0 \\ -1 & 0\end{array}\right],\left[\begin{array}{rr}2 & 0 \\ -2 & 0\end{array}\right]\right\}$ forms a basis for W. III. $\operatorname{dim}(W)=2$.
a) Only I
b) Only II
c) Only III
d) I and II
e) I and III
9. Let $\vec{a}, \vec{b}, \vec{v}$ and \vec{w} are vectors in \mathbb{R}^{n} and suppose the following scalar (dot/inner) products hold:

$$
\begin{array}{lll}
\vec{a} \cdot \vec{a}=2, & \vec{a} \cdot \vec{b}=1, \quad \vec{a} \cdot \vec{v}=-1, & \vec{a} \cdot \vec{w}=-3 \\
\vec{b} \cdot \vec{b}=6, & \vec{b} \cdot \vec{v}=4, \quad \vec{b} \cdot \vec{w}=-4, & \vec{v} \cdot \vec{v}=7 \\
\vec{v} \cdot \vec{w}=2, & \vec{w} \cdot \vec{w}=2
\end{array}
$$

Which of the following is equal to $(2 \vec{a}-\vec{v}) \cdot(\vec{w}+\vec{b})$?
a) -10
b) -14
c) -2
d) 2
e) 14
10. Let $A=\left[\begin{array}{rrrr}-2 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 3 & 0 & 0 & 2\end{array}\right]$. Which of the following is the (3,3)-entry of the inverse matrix A^{-1} ?
a) 0
b) -2
c) 1
d) -1
e) 2
11. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c=5$ and $a+d=6$, which of the following is the characteristic polynomial of A ?
a) $p(\lambda)=\lambda^{2}-6 \lambda+5$
b) $p(\lambda)=3 \lambda^{2}-4 \lambda+6$
c) $p(\lambda)=\lambda^{2}-5 \lambda+6$
d) $p(\lambda)=2 \lambda^{2}-3 \lambda+6$
e) $p(\lambda)=\lambda^{2}+5 \lambda-6$
14. Let $S=\{(1,0,1),(1,1,0),(0,0,1)\}$ and
$T=\left\{w_{1}, w_{2}, w_{3}\right\}$ be ordered bases for \mathbb{R}^{3}. Suppose that the transition matrix from T to S is $[M]_{T}^{S}=\left[\begin{array}{rrr}1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1\end{array}\right]$. Which of the following is T ?
a) $\{(3,2,0),(2,1,0),(3,1,2)\}$
b) $\{(1,0,1),(2,1,3),(3,0,1)\}$
c) $\{(1,1,1),(1,1,3),(3,3,1)\}$
d) $\{(1,2,1),(1,1,2),(2,2,1)\}$
e) $\{(2,0,2),(1,3,0),(3,0,1)\}$

Let B be an invertible matrix with an appropriate size and $A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 3\end{array}\right]$. If the equation $A^{-1} B^{2}=A^{3} B$ holds, what is B ? (Hint: Cayley-Hamilton theorem can be used.)
a) $16 \mathrm{~A}+24 I_{2}$
b) $32 \mathrm{~A}+34 I_{2}$
c) $44 \mathrm{~A}+117 I_{2}$
d) $76 \mathrm{~A}+184 I_{2}$
e) $96 A+196 I_{2}$
13. Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -1 & 3 \\ 0 & 0 & 2\end{array}\right]$. Which of the following can be the eigenvector associated with the largest eigenvalue of the matrix A ?
a) $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
b) $\left[\begin{array}{l}5 \\ 2 \\ 3\end{array}\right]$
c) $\left[\begin{array}{c}15 \\ 6 \\ 1\end{array}\right]$
d) $\left[\begin{array}{l}5 \\ 1 \\ 1\end{array}\right]$
e) $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
15. For what value(s) of t, the set $\left\{(1,0,2),(0, t, 1),\left(t^{2}, 0,2\right)\right\}$ forms a basis for \mathbb{R}^{3} ?
a) $t \in \mathbb{R}-\{0,1\}$
b) $t \in \mathbb{R}-\{0,-1\}$
c) $t=-1$
d) $t \in\{-1,0,1\}$
e) $t \in \mathbb{R}-\{-1,0,1\}$
16. Which of the following matrices is the transition matrix $[M]_{S}^{T}$ from basis S to basis T of \mathbb{R}^{2} where

$$
S=\{(-3,2),(4,-2)\}, T=\{(-1,2),(2,-2)\} ?
$$

(a) $\left[\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right]$
b) $\left[\begin{array}{cc}-1 & -2 \\ -2 & 3\end{array}\right]$
c) $\left[\begin{array}{cc}-1 & 2 \\ -2 & -3\end{array}\right]$
d) $\left[\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right]$
e) $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$
17. Let P_{2} be the vector space of all polynomials of degree ≤ 2 and a zero polynomial. Which of the following subsets of P_{2} are subspaces ?

$$
\begin{aligned}
& \mathcal{M}=\left\{a t^{2}+b t+c: b=c=0\right\} \\
& \mathcal{A}=\left\{a t^{2}+b t+c: b=2 c\right\} \\
& \mathcal{T}=\left\{a t^{2}+b t+c: a+b+c=2\right\}
\end{aligned}
$$

a) Only \mathcal{T}
b) \mathcal{M} and \mathcal{A}
c) \mathcal{M} and \mathcal{T}
d) \mathcal{A} and \mathcal{T}
e) All
20. Which of the following matrices are in reduced row echelon form?

$$
\begin{aligned}
\mathcal{A} & =\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \mathcal{B}=\left[\begin{array}{cccc}
1 & 2 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 3
\end{array}\right], \\
\mathcal{C} & =\left[\begin{array}{cccc}
1 & 0 & 3 & 4 \\
0 & 1 & -2 & 5 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right], \mathcal{D}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

a) \mathcal{B} and \mathcal{C}
b) Only \mathcal{D}
C) \mathcal{A} and \mathcal{D}
d) Only \mathcal{A}
e) Only \mathcal{B}

